CHROM. 8278

COMPORTEMENT DES ÉTHERS

III. CORRÉLATIONS DE DONNÉES CHROMATOGRAPHIQUES DES ÉTHERS AVEC CELLES D'AUTRES POPULATIONS CHIMIQUES

R. FELLOUS, L. LIZZANI-CUVELIER, R. LUFT' et J. P. RABINE

Laboratoire de Chimie organique, Institut Polytechnique Méditerranéen, Université de Nice, 28, av. de Valrose, 06034-Nice Cedex (France)

(Reçu le 24 décembre 1974)

SUMMARY

Behaviour of ethers. III. Relationships between the retention data of ethers and those of other chemical populations

The comparative chromatographic behaviour of various chemical populations can be examined by the following simple linear relationship.

$$\log t'_{R(RZ)_{q_2}} = a \cdot \log t'_{R(RZ')_{q_1}} + b$$

By this relationship retention parameters can be fairly accurately determined.

INTRODUCTION

Parmi les premières études de relations prévisionnelles des temps de rétention, il faut relever les travaux de Rohrschneider¹ qui conduisent à une relation à cinq paramètres et qui ont fait depuis l'objet d'un réexamen approfondi^{2,3}. De son côté, McReynolds⁴ a proposé une équation à sept paramètres. Tout récemment, Weiner et Howery⁵ ont mis au point une équation à huit paramètres basée sur l'analyse factorielle et permettant la prévision d'indices de rétention.

Une autre méthode d'approche est constituée par l'établissement de relations 'comportement-structure' 16-8. Nos propes études 9,10 sur les éthers rentrent dans ce cadre et font apparaître l'existence d'une relation simple entre les temps de rétention des alkyloxyalcanes et ceux des allyloxyalcanes. De même, nous avons pu établir des relations linéaires régissant le comportement des alkyloxyalcanes vis-à-vis de phases stationnaires diverses.

Dans le présent mémoire nous allons montrer que l'approche précédente peut être généralisée et qu'il est possible d'une part de déduire des grandeurs de rétention d'une famille de composés chimiques RZ à partir de celles d'une autre RZ', en

^{*} Auteur auquel toute correspondance doit être adressée.

utilisant pour toutes les mesures une même phase stationnaire φ_1 et d'autre part de prévoir, à partir du comportement d'une famille RZ vis-à-vis d'une phase stationnaire φ_1 , celui d'une autre famille RZ' vis-à-vis d'une phase stationnaire φ_2 .

MÉTHODE ET RÉSULTATS

La méthode d'analyse de données que nous préconisons est basée sur la comparaison d'un ensemble de temps de rétention à l'aide de la relation générale

$$\log t'_{R(RZ)_{\overline{\varphi}_2}} = a \cdot \log t'_{R(RZ')_{\overline{\varphi}_1}} + b \tag{1}$$

dans laquelle Z et Z' représentent les fonctions chimiques des deux populations confrontées, R le groupe variable différenciant entre eux les membres d'une famille donnée, φ_1 et φ_2 les phases stationnaires.

Cette approche englobe deux comparaisons: (i) Celle du comportement d'une famille de substances, mises successivement en présence de deux phases stationnaires q_1 et q_2 . Dans ce cas Z = Z' et la relation 1 se simplifie en

$$\log t_{R(RZ)_{q_2}}' = a_1 \cdot \log t_{R(RZ)_{q_1}}' + b_1 \tag{2}$$

Cette relation nous a permis de montrer⁹ que la pente a_1 traduit la polarité relative des phases stationnaires. (ii) Celle du comportement de deux familles de composés mis en présence d'une même phase stationnaire. Dans ce cas $\varphi_1 = \varphi_2$ et la relation 1 se transforme en

$$\log t_{R(RZ)_{\varphi_1}} = a_2 \cdot \log t_{R(RZ')_{\varphi_1}} + b_2 \tag{3}$$

Si cette dernière est satisfaite, cela signifie que la contribution du groupe variable R à la valeur $\log t_R'$ est semblable pour les deux séries de substances RZ et RZ'.

En utilisant comme données de référence celles relatives aux éthoxyalcanes^o, l'analogie de comportement se traduit par

$$\log t_{R(RZ)_{\varphi_1}}' = a_2 \cdot \log t_{R(ROE)_{\varphi_1}}' + b_2$$

Pour étudier cette analogie, nous avions à notre disposition des grandeurs de rétention, déterminées pour six phases stationnaires de polarité croissante, et concernant d'une part les éthoxyalcanes⁹ que nous avons choisis comme termes de référence et pour lesquels nous avons effectué les mesures de rétention à 120°, d'autre part les résultats relatifs à une série de phénoxyalcanes¹¹, d'acétates¹², d'aldéhydes¹², de méthylcétones¹² et d'alcools¹².

Les résultats obtenus sont rassemblés dans le Tableau I. Nous observons dans tous les cas que les facteurs statistiques de fiabilité (r= coefficient de corrélation et $\psi=$ test d'Exner¹³) sont d'autant meilleurs que la phase stationnaire utilisée est moins polaire. Dans certains cas ($r \le 0.990$ et $\psi \ge 0.16$), la qualité de l'information n'est pas suffisante pour aboutir à une corrélation réelle, mais seulement pour affirmer une tendance à la corrélation (cas des phases stationnaires les plus polaires).

TABLEAU I COMPARAISON DU COMPORTEMENT DES ÉTHOXYALCANES À CELUI D'AUTRES FAMILLES DE SUBSTANCES

Famille	Phase	a_2	b_2	r	ψ
Ф−OR	Apiezon L	0.826	0.010	0.994	0.11
	SE-30	0.765	0,012	0.996	0.09
R = Me, Et, nPr,	Ucon polar	0.734	0.001	0.990	0.15
iPr, nBu,	Carbowax 20M	0.712	0.040	0.979	0.23
iBu, sBu,	XF-1150	0.657	0.035	0,967	0.28
"Pent, iPent	DEGS	0.593	-0.014	0.976	0.24
MeCOOR	Apiezon L	0.998	0.025	0.995	0.10
	SE-30	0.934	0.039	0.994	0.12
R = Me, Et, nPr,	Ucon polar	0.966	0.046	0.990	0.16
iPr. nBu, iBu,	Carbowax 20M	0.943	-0.024	0.978	0.23
sBu, /Bu,	XF-1150	0.998	0.062	0.985	0.19
nPent, iPent	DEGS	0 827	0.060	0 938	0 39
RCHO	Apiezon L	0 950	0 148	0 996	0 10
	SE-30	0.882	0.121	0.996	0.09
R = Et, nPr, iPr,	Ucon polar	0.929	0.094	0,993	0.12
nBu, iBu, sBu,	Carbowax 20M	0.919	-0.132	0.979	0.22
Bu, nPent,	XF-1150	0.942	0.036	0.996	0.10
nHex	DEGS	0,896	0.016	0.981	0.21
MeCOR	Apiezon L	0.891	-0.142	0.999	0.05
	SE-30	0.850	-0.127	0.999	0.03
R = Et, nPr, iPr,	Ucon polar	0.890	-0.104	0.999	0.03
nBu, sBu, iBu,	Carbowax 20M	0.877	0.124	0.998	0.06
Bu, nPent,	XF-1150	0.872	-0.035	0.998	0.05
nHex, nHept	DEGS	0.836	0.063	0.995	0.11
ROH	Apiezon L	0.991	0.069	0.992	0.13
	SE-30	0.955	0,009	0.990	0.14
R = Me, Et, nPr, iPr,	Ucon polar	1.018	0,023	0.976	0.23
nBu, iBu, sBu,	Carbowax 20M	0.986	0.092	0.961	0.29
Bu, nPent,	XF-1150	0,971	0.021	0.975	0.23
iPent, sPent, 'Pent, Me-2 Bu, [s.iPent, néoPent, 'Hex, "Hept, "Oct	DEGS	0.874	0,004	0.961	0.29

Le coefficient a_2 dépend à la fois de la nature de la phase stationnaire, de la fonction chimique, de l'environnement fixe de cette dernière (Tableau II) et de la température (Tableau III). En d'autres termes a_2 est un coefficient de nature composite, lié aux phénomènes d'interaction soluté-solvant. Ces considérations restent valables en ce qui concerne le terme b_2 .

L'étude des résultats obtenus par application de la relation 3 indique qu'il est difficile de réaliser une incrémentation simple conduisant à la détermination, pour une même phase stationnaire, des temps de rétention des composés d'une population donnée à partir de ceux d'une famille de référence. Ceci reste vrai pour l'équation 1. Celle-ci présente cependant des avantages dans le domaine pratique où il n'est pas toujours possible de sélectionner une phase stationnaire qui aurait le meilleur pouvoir séparateur possible vis-à-vis de toutes les fonctions chimiques. L'intérêt de la rela-

TABLEAU II

COMPARAISON DU COMPORTEMENT DES ESTERS¹⁴ À CELUI DES ÉTHOXYALCANES Phase stationnaire, SE-30; température de mesure, 150°. R = Me, Et, nPr, iPr, nBu, iBu, nPent, iPent.

Esters	a ₂	b_2	r	$oldsymbol{\psi}$
HCOOR	0.827	0.053	0.994	0.12
McCOOR	0.769	0.013	0.998	0.07
EtCOOR	0.767	0.010	0.996	0.10
nPrCOOR	0.704	0.021	0.997	0.09
iPrCOOR	0.710	0.017	0.997	0.08
nBuCOOR	0.693	0.015	0.996	0.10
iBuCOOR	0.702	0.037	0.996	0.11
nAmCOOR	0.683	0.014	0.997	0.09
iAmCOOR	0.691	0.019	0.997	0.09

TABLEAU III

COMPARAISON DU COMPORTEMENT DE DIVERSES FAMILLES CHIMIQUES À CELUI DES ÉTHOXYALCANES —INFLUENCE DE LA TEMPÉRATURE

Phase stationnaire, Apiezon L. Séries identiques à celles du Tableau I. (Bibl. 12).

Famille a ₂			b_2		r		ıp	
	120°	160°	120°	160°	120°	160°	120°	160°
ROH	0.991	0.851	0.069	0.079	0,992	0.991	0.13	0.14
McCOOR	0.998	0.801	0.025	0.030	0,995	0.997		0.08
RCHO	0.950	0.601	··· 0.148	0.015	0,996	0,981	0.10	0.22
McCOR	0.891	0.749	-·· 0.142	0.102	0,999	0,996	0.05	0.09

tion 1 est illustré par les données du Tableau IV. Celui-ci fait cependant apparaître l'existence d'interactions spécifiques³ dans le cas des amines et des alcools, interactions qui diminuent la précision de la corrélation.

Par ailleurs, nous avons pu vérifier qu'il est possible d'établir des relations de type 1 en se basant sur les grandeurs de rétention relatives non réduites. Par exemple, on peut relier les alcènes-1 (squalane, 27°)¹⁹ aux méthylcétones (SE-30, 210°)²⁰ par la relation

$$\log t_{R(R-CH=CH_2)} = 0.298 \log t_{R(MeCOR)} - 0.309$$
 où
$$r = 0.997 \text{ et } \psi = 0.09$$

CONCLUSION

Le moyen d'approche que nous proposons dans le présent mémoire permet, même à partir de données expérimentales d'auteurs différents, d'établir des relations linéaires entre les temps de rétention de deux ensembles de substances R-Z et R-Z'. Ces temps de rétention peuvent être déterminés aussi bien dans des conditions isothermes que par programmation linéaire²¹. Ce type de relation ne saurait préjuger du modèle d'interaction soluté-solvant.

TABLEAU IV COMPORTEMENT COMPARÉ DES ÉTHOXYALCANES (φ_1 = APIEZON L) ET D'AUTRES POPULATIONS CHIMIQUES (φ_2 = DIVERS) -VÉRIFICATION DE LA RELATION I

and the second contract of the second contrac					***	
R – $Z/Phase \varphi_2$	Bibl.	а	b	r	$\boldsymbol{\psi}$	p
R-CH = CH ₂	15	1.675	0.138	0.993	0.13	10
Squalane						
(E) R-CH=CH-Me	15	1.711	0.073	0.993	0.13	7
Squalane						
R-I	16	0,889	0.057	0.996	0.09	12
Tricrésylphosphate						
R-OH	17	1.014	0.121	0.976	0.24	12
Célite/PEG 1500						
R-NH ₂	18	1.124	-0.039	0.989	0.16	12
Carbowax 20M						
Célite/KOH						
R-CHO	12	0.945	0.181	0.995	0.11	9
Hallcomid M18 of						
R-CO-Me	12	0.890	-0.168	0.999	0.03	11
Hallcomid M18 ol						
R-COOMe	14	0.719	0.055	0.995	0.11	8
SE-30						
Me-COOR	12	0.954	0.027	0.989	0.16	15
Hallcomid M18 of						
Me-CH=C(R)-COOMe	22	0.559	0.019	0.995	0.10	10
OV-210						
R-C(Mc) == CH-COOMc	22	0.539	0.018	0.998	0.07	10
XF-1150						
p-R-P-OH	23	0.831	0.230	0.994	0.12	7
Tri-(2,4-xylényl) phosphate						
o-R-P-OH	23	0.724	0.110	0.991	0.15	7
Tri-(2,4-xylényl) phosphate						
and the second s		+				

Il ressort de notre étude que les groupes alkyles R ont un comportement analogue, quelle que soit la fonction chimique de la population examinée. De ce fait, la part que prend le groupement R dans l'interaction de premier ordre dipôle—dipôle devrait pouvoir être logiquement examinée à l'aide de paramètres polaires et stériques, tels que ceux de Taft.

RÉSUMÉ

Le comportement chromatographique comparé de diverses populations chimiques peut être abordé grâce à des relations simples du type

$$\log t'_{R(RZ)_{\varphi_2}} = a \cdot \log t'_{R(RZ')_{\varphi_1}} + b$$

Cette relation permet une précision raisonnable des grandeurs de rétention.

NOTE AJOUTÉE À LA LECTURE DES ÉPREUVES

À la fin de la grève des services postaux français nous avons eu connaissance d'un article par Ladon²⁴. L'analyse que Ladon développe dans ce mémoire est basée

sur une relation parallèle à la nôtre par sa forme, mais appliquée à des recherches divergentes des nôtres.

BIBLIOGRAPHIE

- 1 L. J. Rohrschneider, J. Chromatogr., 22 (1966) 6.
- 2 A. Hartkopf, J. Chromatogr. Sci., 12 (1974) 113.
- 3 A. Hartkopf, S. Grunfeld et R. Delumyea, J. Chromatogr. Sci., 12 (1974) 119.
- 4 W. O. McReynolds, J. Chromatogr. Sci., 8 (1970) 685.
- 5 P. H. Weiner et D. G. Howery, Anal. Chem., 44 (1972) 1189.
- 6 G. Lenfant, M. Chastrette et J. E. Dubois, J. Chromatogr. Sci., 9 (1971) 220.
- 7 J. K. Haken, J. Chromatogr. Sci., 11 (1973) 144.
- 8 F. Vernon, J. Chromatogr., 87 (1973) 29.
- 9 R. Fellous, L. Lizzani-Cuvelier, R. Luft et J. P. Rabine, J. Chromatogr., 90 (1974) 149.
- 10 R. Fellous, L. Lizzani-Cuvelier, R. Luft, J. P. Rabine et M. Rouillard, Bull. Soc. Chim. Fr., (1974) 2482.
- 11 C. Lafeuillouse, Thèse Spécialité, Nice, 1970.
- 12 W. O. McReynolds, Gas Chromatographic Retention Data, Preston Technical Abstracts Co., Evanston, Ill., 1966.
- 13 O. Exner, Collect. Czech. Chem. Commun., 31 (1966) 3222.
- 14 I. D. Allen et J. K. Haken, J. Chromatogr., 49 (1970) 409.
- 15 R. A. Hively et R. E. Hinton, J. Gas Chromatogr., 6 (1968) 203.
- 16 G. Castello, G. D'Amato et E. Biagini, J. Chromatogr., 41 (1969) 313.
- 17 J. R. Lindsay Smith et D. J. Waddington, J. Chromatogr., 36 (1968) 145.
- 18 J. R. Lindsay Smith et D. J. Waddington, J. Chromatogr., 42 (1969) 183.
- 19 A. W. Ladon et S. Sandler, Anal. Chem., 45 (1973) 921.
- 20 M. Chastrette et G. Lenfant, J. Chromatogr., 77 (1973) 255.
- 21 R. B. Watts et R. G. O. Kekwick, J. Chromatogr., 88 (1974) 165.
- 22 J. R. Ashes et J. K. Haken, J. Chromatogr., 62 (1971) 39.
- 23 J. Macák, P. Buryan et J. Hrivňák, J. Chromatogr., 89 (1974) 309.
- 24 A. W. Ladon, J. Chromatogr., 99 (1974) 203.